Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522105

RESUMO

We introduce a new scanning probe microscopy (SPM) concept called reverse tip sample scanning probe microscopy (RTS SPM), where the tip and sample positions are reversed as compared to traditional SPM. The main benefit of RTS SPM over the standard SPM configuration is that it allows for simple and fast tip changes. This overcomes two major limitations of SPM which are slow data acquisition and a strong dependency of the data on the tip condition. A probe chip with thousands of sharp integrated tips is the basis of our concept. We have developed a nanofabrication protocol for Si based probe chips and their functionalization with metal and diamond coatings, evaluated our probe chips for various RTS SPM applications (multi-tip imaging, SPM tomography, and correlative SPM), and showed the high potential of the RTS SPM concept.

2.
Nano Lett ; 24(4): 1191-1196, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38231178

RESUMO

Optical metrology is ubiquitous, but image-based methods cannot resolve features of dimensions much smaller than the wavelength. However, it has recently been demonstrated that light can be nanofocused into subwavelength semiconducting lines by setting the incident polarization along the direction of these lines. This Letter extends the previous studies to systems with two perpendicular gratings, as found e.g. after replacement gate processing of gate-all-around (GAA) field-effect transistors (FETs). We show that besides the nanofocusing effect, the incident polarization also offers control over which array of lines the light couples into. The interaction of the incident light occurs with the semiconducting lines to which the polarization is parallel with remarkably low interference from the existence of another perpendicular grating. We demonstrate the use of this effect with Raman spectroscopy to simultaneously extract the SiGe volume and the strain in the Si forksheet channels and in the SiGe layers of GAA FETs.

3.
ACS Nano ; 18(4): 3173-3186, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235963

RESUMO

Recently, a step-flow growth mode has been proposed to break the inherent molybdenum disulfide (MoS2) crystal domain bimodality and yield a single-crystalline MoS2 monolayer on commonly employed sapphire substrates. This work reveals an alternative growth mechanism during the metal-organic chemical vapor deposition (MOCVD) of a single-crystalline MoS2 monolayer through anisotropic 2D crystal growth. During early growth stages, the epitaxial symmetry and commensurability of sapphire terraces rather than the sapphire step inclination ultimately govern the MoS2 crystal orientation. Strikingly, as the MoS2 crystals continue to grow laterally, the sapphire steps transform the MoS2 crystal geometry into diamond-shaped domains presumably by anisotropic diffusion of ad-species and facet development. Even though these MoS2 domains nucleate on sapphire with predominantly bimodal 0 and 60° azimuthal rotation, the individual domains reach lateral dimensions of up to 200 nm before merging seamlessly into a single-crystalline MoS2 monolayer upon coalescence. Plan-view transmission electron microscopy reveals the single-crystalline nature across 50 µm by 50 µm inspection areas. As a result, the median carrier mobility of MoS2 monolayers peaks at 25 cm2 V-1 s-1 with the highest value reaching 28 cm2 V-1 s-1. This work details synthesis-structure correlations and the possibilities to tune the structure and material properties through substrate topography toward various applications in nanoelectronics, catalysis, and nanotechnology. Moreover, shape modulation through anisotropic growth phenomena on stepped surfaces can provide opportunities for nanopatterning for a wide range of materials.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37889473

RESUMO

Nanomaterials are driving advances in technology due to their oftentimes superior properties over bulk materials. In particular, their thermal properties become increasingly important as efficient heat dissipation is required to realize high-performance electronic devices, reduce energy consumption, and prevent thermal damage. One application where nanomaterials can play a crucial role is extreme ultraviolet (EUV) lithography, where pellicles that protect the photomask from particle contamination have to be transparent to EUV light, mechanically strong, and thermally conductive in order to withstand the heat associated with high-power EUV radiation. Free-standing carbon nanotube (CNT) films have emerged as candidates due to their high EUV transparency and ability to withstand heat. However, the thermal transport properties of these films are not well understood beyond bulk emissivity measurements. Here, we measure the thermal conductivity of free-standing CNT films using all-optical Raman thermometry at temperatures between 300 and 700 K. We find thermal conductivities up to 50 W m-1 K-1 for films composed of double-walled CNTs, which rises to 257 W m-1 K-1 when considering the CNT network alone. These values are remarkably high for randomly oriented CNT networks, roughly seven times that of single-walled CNT films. The enhanced thermal conduction is due to the additional wall, which likely gives rise to additional heat-carrying phonon modes and provides a certain resilience to defects. Our results demonstrate that free-standing double-walled CNT films efficiently dissipate heat, enhancing our understanding of these promising films and how they are suited to applications in EUV lithography.

5.
ACS Nano ; 15(6): 9482-9494, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34042437

RESUMO

In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal-organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step height-and thus also surface structure-become more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.

6.
Langmuir ; 36(44): 13144-13154, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104359

RESUMO

Area-selective deposition (ASD) offers tremendous advantages when compared with conventional patterning processes, such as the possibility of achieving three-dimensional features in a bottom-up additive fashion. Recently, ASD is gaining more and more attention from IC manufacturers and equipment and material suppliers. Through combination of self-assembled monolayer (SAM) surface passivation of the nongrowth substrate area and atomic layer deposition (ALD) on the growth area, ASD selective to the growth area can be achieved. With the purpose of screening SAM precursors to provide optimal passivation performance on SiO2, various siloxane precursors with different terminal groups and alkyl chains were investigated. Additionally, the surface dependence and growth inhibition of TiN ALD on -NH2, -CF3, and -CH3 terminations is investigated. We demonstrated the methyl termination of the SAM precursor combined with a C18 alkyl chain plays an important role in broadening the ALD selectivity window by suppressing precursor adsorption. Owing to the high surface coverage, excellent thermal stability and longer carbon chain length, an optimized trimethoxy(octadecyl)silane (TMODS) film deposited from liquid phase was able to provide a selectivity higher than 0.99 up to 20 nm ALD film deposited on hydroxyl-terminated Si oxide. The approach followed in this work can allow extending the ASD process window, and it is relevant for a wide variety of applications.

7.
ACS Appl Mater Interfaces ; 12(24): 27508-27517, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32447952

RESUMO

Layered materials held together by weak van der Waals (vdW) interactions are a promising class of materials in the field of nanotechnology. Besides the potential for single layers, stacking of various vdW layers becomes even more promising since unique properties can hence be precisely engineered. The synthesis of stacked vdW layers, however, remains to date, hardly understood. Therefore, in this work, the vdW epitaxy of transition metal dichalcogenides (TMDs) on single-crystalline TMD templates is investigated in depth. It is demonstrated that the role of lattice mismatch is insignificant. More importantly is the role of surface energy, calculated using density functional theory, which plays an essential role in the activation energy for adatom diffusion, hence nucleation density. This in turn correlates with defect density since the stacking sequence in vdW epitaxy is generally poorly controlled. Moreover, the vapor pressure of the transition metal is also found to correlate with adatom diffusion. Consequently, the proposed study enables important and new insight in the vdW epitaxy of multilayer 2D homo-/heterostructures.

8.
Nanotechnology ; 31(12): 125604, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31816615

RESUMO

In this paper, we explore the impact of changing the growth conditions on the substrate surface during the metal-organic vapor phase epitaxy of 2D-transition metal dichalcogenides. We particularly study the growth of molybdenum disulfide (MoS2) on sapphire substrates at different temperatures. We show that a high temperature leads to a perfect epitaxial alignment of the MoS2 layer with respect to the sapphire substrate underneath, whereas a low temperature growth induces a 30° epitaxial alignment. This behavior is found to be related to the different sapphire top surface re-arrangement under H2S environment at different growth temperatures. Structural analyses conducted on the different samples confirm an improved layer quality at high temperatures. MoS2 channel-based metal-oxide-semiconductor field-effect transistors are fabricated showing improved device performance with channel layers grown at high temperature.

9.
Sci Rep ; 8(1): 11637, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072798

RESUMO

Superhydrophobic surfaces are highly promising for self-cleaning, anti-fouling and anti-corrosion applications. However, accurate assessment of the lifetime and sustainability of super-hydrophobic materials is hindered by the lack of large area characterization of superhydrophobic breakdown. In this work, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is explored for a dynamic study of wetting transitions on immersed superhydrophobic arrays of silicon nanopillars. Spontaneous breakdown of the superhydrophobic state is triggered by in-situ modulation of the liquid surface tension. The high surface sensitivity of ATR-FTIR allows for accurate detection of local liquid infiltration. Experimentally determined wetting transition criteria show significant deviations from predictions by classical wetting models. Breakdown kinetics is found to slow down dramatically when the liquid surface tension approaches the transition criterion, which clearly underlines the importance of more accurate wetting analysis on large-area surfaces. Precise actuation of the superhydrophobic breakdown process is demonstrated for the first time through careful modulation of the liquid surface tension around the transition criterion. The developed ATR-FTIR method can be a promising technique to study wetting transitions and associated dynamics on various types of superhydrophobic surfaces.

10.
Langmuir ; 33(15): 3601-3609, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28335608

RESUMO

In situ characterization of the underwater stability of superhydrophobic micro- and nanostructured surfaces is important for the development of self-cleaning and antifouling materials. In this work, we demonstrate a novel attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy-based method for large-area wetting characterization of silicon nanopillars. When air is present in between the structures, as is characteristic of the Cassie-Baxter state, the relative intensities of the water bands in the absorption spectrum change because of the wavelength-dependent attenuation of the evanescent wave. This phenomenon enables unambiguous identification of the wetting state and assessment of liquid impalement. Using mixtures of isopropanol and water with different concentrations, the breakdown of superhydrophobic states and the wetting hysteresis effects are systematically studied on uniform arrays of silicon nanopillars. A transition from the Cassie-Baxter to Wenzel state is observed when the isopropanol concentration exceeds 2.8 mol %, corresponding to a critical surface tension of 39 mN/m. Spontaneous dewetting does not occur upon decreasing the isopropanol concentration, and pure water can be obtained in a stable Wenzel state on the originally superhydrophobic substrates. The developed ATR-FTIR method can be promising for real-time monitoring of the wetting kinetics on nanostructured surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...